Modeling of an Electric Vehicle Thermal Management System in MATLAB/Simulink

نویسندگان

  • Tibor Kiss
  • Jason Lustbader
  • Daniel Leighton
چکیده

Electric vehicles (EVs) need highly optimized thermal management systems to improve range. Climate control can reduce vehicle efficiency and range by more than 50%. Due to the relative shortage of waste heat, heating the passenger cabin in EVs is difficult. Cabin cooling can take a high portion of the energy available in the battery. Compared to internal combustion engine-driven vehicles, different heating methods and more efficient cooling methods are needed, which can make EV thermal management systems more complex. More complex systems typically allow various alternative modes of operation that can be selected based on driving and ambient conditions. A good system simulation tool can greatly reduce the time and expense for developing these complex systems. A simulation model should also be able to efficiently co-simulate with vehicle simulation programs, and should be applicable for evaluating various control algorithms. The MATLAB/Simulink dynamic system simulation environment, widely used in the automotive industry, effectively meets these criteria. To model the full EV thermal management system, the National Renewable Energy Laboratory's air-conditioning model now incorporates liquid-coolant system components. In the full system model, lookup tables were used to characterize the components' performance. Predicted data obtained with the system simulation model were compared against experimental data. An agreement within 5% for most of the system parameters was achieved. The validated system model was then used to determine which of two possible locations for the power electronics and electric motor in the system is better for quick cabin heating starting from cold soak.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence

As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...

متن کامل

Two-Surfaces Sliding Mode Controller for Energy Management of Electric Vehicle Based on Multi Input DC-DC Converter

In this paper, a two-surfaces sliding mode controller (TSSMC) is proposed for the voltage tracking control of a two input DC-DC converter in application of electric vehicles (EVs). The imperialist competitive algorithm (ICA) is used for tuning TSSMC parameters. The proposed controller significantly improves the transient response and disturbance rejection of the two input converters while p...

متن کامل

MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was expanded by including a newly developed coolant loop solution method aimed at reducing the simulation effort for complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elemen...

متن کامل

Design of an anti-lock regenerative braking system for a series hybrid electric vehicle

In this paper, an adaptive rule based controller for an anti-lock regenerative braking system (ARBS) of a series hybrid electric bus (SHEB) has been proposed. The proposed controller integrates the regenerative braking and wheel anti-lock functions by controlling the electric motor of the hybrid vehicle, without using any conventional mechanical anti-lock braking system. The performance of the ...

متن کامل

Design, Modeling and Energy Management of a PEM Fuel Cell / Supercapacitor Hybrid Vehicle

This work concerns the study and the modeling of hybrid Proton Exchange Membrane (PEM) Fuel Cell electric vehicle. In fact, the paper deals with the model description of the powertrain which includes two energy sources: a PEM Fuel Cell as a primary source and a supercapacitor as a secondary source. The architecture is two degrees of freedom permitting a stability of the DC bus voltage. The hybr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015